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Abstract.

In hydrological models, parameters are used to adapt the model to the conditions of the catchments. Hereby, the parameters

need to be identified based on their role in controlling the hydrological behaviour in the model. For parameter identification,

multiple and complementary performance criteria are used, which have to capture the different aspects of hydrological response

of catchments. A reliable parameter identification depends on how distinctly a model parameter can be assigned to one of the5

performance criteria.

We introduce an analysis that reveals the connective strength between model parameters and performance criteria. The connec-

tive strength assesses the intensity in the interrelationship between model parameters and performance criteria. In our analysis

of connective strength, model simulations are carried out based on a Latin Hypercube sampling. Ten performance criteria in-

cluding the NSE, the KGE and its three components (alpha, beta and r) as well as the RSR for different segments of the flow10

duration curve (FDC) are calculated.

With a joint analysis of two regression trees (RT), it is derived how a model parameter is connected to the different performance

criteria. At first, RTs are constructed using each performance criteria as target variable to detect the most relevant model param-

eters for each performance criteria. A second RT approach using each parameter as target variable detects which performance

criterion is impacted by changes in parameter values. Based on this, appropriate performance criteria are identified for each15

model parameter.

A high bijective connective strength is calculated for low and mid flow conditions. Moreover, the RT analyses emphasise the

benefit of an individual analysis of the three components of the KGE and of the FDC segments. It is emphasised under which

conditions these performance criteria provide insights into a precise parameter identification. Separate performance criteria are

required to identify dominant parameters on low and mid flow conditions, whilst the number of required performance criteria20

for high flows increases with the process complexity in the catchment. Overall, the analysis of the connective strength using

RTs contribute towards a better handling of parameters and performance criteria in hydrological modelling.
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1 Introduction

In models, hydrological processes are represented in a simplified way. Fluxes and changes in states are described by mathe-

matical equations. To adapt the model to the hydrological conditions of the study catchments, multiple parameters are included

in the model structure. Each of them has a specific role by representing one or multiple processes.

For reliable model simulations, it is required to identify parameter values that lead to a reasonable reproduction of their5

corresponding hydrological processes (Wagener et al., 2003; Pfannerstill et al., 2014a). Typically, model parameters are esti-

mated using performance criteria which minimise the differences between measured and modelled discharge. In this parameter

identification, it is implicitly assumed that the model parameters are precisely identified by the selected set of performance

criteria. To investigate the correctness of this assumption, the interrelationship between model parameters and performance

criteria needs to be identified as an initial step towards accurate parameter identification.10

In order to capture all aspects of the hydrological system, it is recommended to use multiple and contrasting performance

criteria (Gupta et al., 1998; Vrugt et al., 2003; Krause et al., 2005; Gupta et al., 2009; Reusser et al., 2009; Guse et al., 2014).

In this context, we use the term ’performance criteria’ as an overall term both for statistical performance metrics and signature

measures. Typical statistical performance metrics are the Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) and as

a further development, the Kling-Gupta-Efficiency (KGE) (Gupta et al., 2009; Kling et al., 2012) which separately considers15

the three components bias (KGE_beta), variability (KGE_alpha) and correlation (KGE_r) to improve the estimation of the

performance error compared to the NSE.

Recent studies recommended to use signature measures, which are directly related to catchment functions with the aim

to consider the relevance of a certain process individually (Yilmaz et al., 2008; van Werkhoven et al., 2009; Clark et al.,

2011; Martinez and Gupta, 2011; Pokhrel et al., 2012; McMillan et al., 2014). Signature measures based on flow duration20

curves (FDC) provide diagnostic information of how a model performs for different discharge magnitudes (Yilmaz et al., 2008;

Cheng et al., 2012; Yaeger et al., 2012; Pfannerstill et al., 2014a). Pfannerstill et al. (2014a) showed that a separation of the

flow duration curve into five segments improved the model results for different discharge magnitudes and reduced the trade-

off between satisfying results both for high and low flows in the same model run. By using different signature measures, the

hydrologic behaviour is represented better in the performance assessment (Martinez and Gupta, 2011; Singh et al., 2011; Euser25

et al., 2013) and a precise interpretation which processes are accurately reproduced is realised (Gupta et al., 2009).

Each performance criterion emphasises different hydrological conditions with respect to e.g. discharge dynamics, discharge

magnitude, water balance, high flows (Madsen, 2000; Boyle et al., 2001; Wagener et al., 2001). By selecting a specific perfor-

mance criteria, a certain part of the hydrograph is inevitably weighted higher than other parts (Yapo et al., 1998; Madsen et al.,

2002; Vrugt et al., 2003; Krause et al., 2005). Thus, depending on the focus of a performance criteria, different parts of the30

hydrograph are emphasised or neglected (Pechlivanidis et al., 2014; Pfannerstill et al., 2014a; Haas et al., 2016).

In order to capture magnitude and dynamic in the modelled discharge time series, a combination of statistical performance

metrics and signature measures in the model evaluation is recommended (van Werkhoven et al., 2008, 2009; Pechlivanidis

et al., 2014; Pfannerstill et al., 2014a). An appropriate set of performance criteria should be selected so that all hydrological
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conditions are represented by at least one performance criteria (Pfannerstill et al., 2014a). With increasing number of perfor-

mance criteria more aspects of the hydrological behaviour are captured (Singh et al., 2011). Optimally, all performance criteria

are complementary and related to different aspects of the hydrological system (Gupta et al., 1998; Clark et al., 2011; Pokhrel

et al., 2012). The selection of an appropriate set of performance criteria is still challenging since the number and type of per-

formance criteria which are required to explain the hydrological behaviour in a study catchment is unclear and depends on the5

catchment characteristics and its underlying process complexity (Wagener and Montanari, 2011; Pokhrel et al., 2012).

For reliable identification of a model parameter, a performance criteria is appropriate which is related to the part of the

hydrograph that is controlled by the selected model parameter. It is assumed that a performance criterion contributes to a

better interpretation of the hydrological behaviour if it is related directly to the different components of the model structure

(Yilmaz et al., 2008; Gupta et al., 2009; Martinez and Gupta, 2010; Pechlivanidis et al., 2014; Sadegh and Vrugt, 2014). An10

implicit consideration of different hydrological components leads to a better understanding of the role of model parameters

in controlling the hydrological behaviour in models (Guse et al., 2016a). It is thus intended to establish a strong relationship

between a model parameter and a performance criterion which is appropriate for the associated process (Fenicia et al., 2007).

Yilmaz et al. (2008) demonstrated that changes of model parameters in particular effect signature measures that are related to

the corresponding process such as that parameters controlling evapotranspiration are sensitive to low flows and water capacity15

parameters are more related to the bias between measured and modelled discharge time series.

Several studies showed that the relevance of model parameters changes when using different performance criteria (van

Werkhoven et al., 2008; Abebe et al., 2010; Herman et al., 2013; Guse et al., 2014). Gupta et al. (2009) emphasised the need

to investigate how changes in model parameter values influence the three components of the Kling-Gupta-Efficiency (KGE).

For a clear detection of model parameters, different performance criteria are required to determine whether parameters are20

only relevant specifically for a certain performance criteria. Moreover, it was shown that the relevance of model parameters

is site-specific depending on the prevailing dominant processes (Gupta et al., 2014; Guse et al., 2016b). Thus, representative

investigations of the relationship of model parameters and performance criteria requires analyses in contrasting catchments

with differences in the dominant processes.

Performance measures were already classified in terms of catchment characteristics. Singh et al. (2014a) and Pechlivanidis25

and Arheimer (2015) classified performance criteria in different groups by using Classification and Regression Trees (CART) to

identify the drivers of model performance. Both studies showed how different catchment characteristics and derived signatures

result in a typical model performance. By doing so, the hydrological conditions for a specific model were detected which led to

a good (poor) model performance. These studies presented an approach to explain the model performance based on catchment

characteristics.30

This idea can transfered to the relationship between performance measures and model parameters. A better understanding

of how model parameters and performance criteria are interrelated is a core idea of diagnostic model analysis (Gupta et al.,

2008, 2009). For a precise parameter identification, the most relevant performance criteria for each model parameter needs to

be derived. Thus, to our knowledge an explanation of how performance criteria are controlled by different model parameters

using regression trees and how this relationship changes for different types of performance criteria is still missing.35
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This study aims to identify the connective strength between model parameters and performance criteria. The connective

strength assesses how strongly model parameters and performance criteria are interrelated using regression trees (RT). At first,

it is investigated how the most influencing parameters vary for the selected performance criteria to analyse how strongly a set of

model parameters affects different performance criteria. Second, looking from the side of the model parameters, it is analysed

which performance criteria are impacted by changes in a certain model parameter to detect which performance criteria are able5

to represent changes in a certain parameter. A high connective strength is given in the case that first a performance measure is

controlled by one model parameter and second this model parameter influences the same performance measure to a relevant

extent. This means that the model parameter has no relevant impact on other performance measures. This approach intends to

contribute to an identification of an appropriate set of performance criteria as initial step for a precise identification of model

parameters.10

2 Methods and Materials

2.1 Study catchments

In contrasting catchments, different hydrological processes are of major relevance (Atkinson et al., 2002; Merz and Blöschl,

2004; Jothityangkoon and Sivapalan, 2009; Guse et al., 2016b). Thus, also the ability of a certain performance criteria in

identifying a certain model parameter varies. With increasing relevance of a process, an accurate reproduction becomes more15

important. Thus, to check the applicability of the proposed approach, two catchments with different catchment characteristics

are selected and measured daily discharge time series from their catchment outlets are used for this study.

2.1.1 Treene

The Treene catchment (up to the hydrological station Treia, 481 km2) is as a typical lowland catchment as indicated by the

strong groundwater influence even under high flow conditions (Guse et al., 2014; Pfannerstill et al., 2014b; Guse et al., 2016b).20

Moreover, tile flow is a relevant process evoked by high drainage activities (Kiesel et al., 2010). Other fast runoff components

are of minor relevance as it is expected from the low topographic gradient in the catchment (elevation only up to 80 meters).

The Treene catchment is dominant by agricultural areas whilst only a minor part is covered by forests and urban areas (Guse

et al., 2015).

2.1.2 Upper Saale25

The Upper Saale catchment (hydrological station Blankenstein, about 1000 km2) is located in the mid-range mountains of

Germany. This catchment is characterised by a higher diversity in dominant processes compared to the Treene catchment

with temporally changes in the relevance of snowmelt, surface runoff as well as groundwater flow as highlighted by Guse

et al. (2016b). The landscape is covered mostly by forests (upper parts) and agriculture (lower parts). Compared to the Treene
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catchment, altitude is higher (between 415 and 856 metres) and slopes are steeper. Thus fast runoff components are of higher

relevance.

2.2 Soil and Water Assessment Tool (SWAT)

The conceptual and process-based eco-hydrological model SWAT (Soil and Water Assessment Tool, Arnold et al. (1998)) is

used in this study. The SWAT model is spatially discretised into subbasins which are sub-divided into hydrological response5

units (HRUs) based on unique information in landuse, soil and slope. The HRU is the central calculation unit for which the

water balance is resolved. The change in soil water storage is calculated for each day as evoked by inputs (e.g. precipitation)

and outputs (e.g. evapotranspiration, runoff components).

In this study, the SWAT3S-version (Pfannerstill et al., 2014a) as a further development of the SWAT model was used. In

SWAT3S, the groundwater modelling has been improved by subdividing the active aquifer contributing to the river discharge10

into a fast and a slow responding one. The SWAT model set-up for both catchments was realised as described in Guse et al.

(2016b). For a detailed description of the model set-up, we refer to this study.

Twelve SWAT model parameters from different hydrological components are selected (Tab. 1) to analyse the relationship of

performance criteria to model parameters which are controlling different parts of the hydrograph. The final selection is based

on studies with successfull applications of the SWAT model within the studied catchments (Guse et al., 2016b; Pfannerstill15

et al., 2015).

[Table 1 about here.]

Model simulations were carried out based on 2000 different parameter sets that were generated with the Latin Hypercube

sampling approach as it is implemented in the r-package FME (Soetaert and Petzoldt, 2010). In the Latin Hypercube sampling,

all model parameters were changed simultaneously within the whole parameter space. For a more detailed description, please20

see Pfannerstill et al. (2014b).

2.3 Performance criteria

Ten performance criteria including five performance metrics and five signature measures were selected to capture different

aspects of hydrological behaviour in models and as recommended in recent diagnostic model studies (Kling et al., 2012;

Pechlivanidis et al., 2014; Pfannerstill et al., 2014b; Haas et al., 2015)25

The Nash-Sutcliffe Efficiency Criteria (NSE) (Eq. 1) is one of the most often used performance criteria in hydrology (Nash

and Sutcliffe, 1970). The NSE focuses on the variability in the measured discharge time series. It is known to give higher

weights to high flows than to low flows (Schaefli and Gupta, 2007; Gupta et al., 2009; Pfannerstill et al., 2014b).

NSE = 1 −

N∑
i=1

(Qo−Qs)2

N∑
i=1

(Qo −
−
Qo)2

(1)
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Qo is the measured discharge

Qs is the modelled discharge
−
Qo is the mean of the measured discharge

The Kling-Gupta Efficiency criteria (KGE) (Gupta et al., 2009; Kling et al., 2012) is based on a decomposition of the NSE

into its three components (Eq. 2), which can be separately considered for each model run. Model errors can be directly related

to variability (KGE_alpha), bias (KGE_beta) and correlation (KGE_r) between measured and modelled discharge time series.

KGE_alpha is the variability ratio between the standard deviation of measured and modelled discharge values. A KGE_alpha5

larger than one shows that the variability in the modelled discharge time series is higher than in the measured discharge time

series, while a lower KGE_alpha than one represents the opposite case. KGE_beta is the bias ratio between the average values

for measured and modelled discharge. A KGE_beta larger than one represents an overestimation of discharge, i.e. a positive

bias, while lower values than one illustrate an underestimation. KGE_beta and KGE_alpha represent the reproduction of the

first and second moments, respectively, as emphasised by Kling et al. (2012). KGE_r represents the correlation coefficient10

according to Pearson. Using KGE_r, the agreement in temporal dynamics between measured and modelled discharge time

series is analysed. To calculate the KGE, the Euclidean distance to the ideal point in the three-dimensional criteria space which

is created by its three components is calculated (Gupta et al., 2009). All three KGE components as well as the KGE have an

ideal value of one.

KGE = 1−
√

(KGE_alpha− 1)2 + (KGE_beta− 1)2 + (KGE_r− 1)2 (2)15

KGE_alpha = σs/σo

KGE_beta = µs/µo

KGE_r = correlation coefficient
In addition to these five performance metrics, five signature measures are selected based on the FDC. The FDC only con-

siders the discharge magnitude without considering the temporal occurrence of discharge values (Vogel and Fennessey, 1996;

Yilmaz et al., 2008; Westerberg et al., 2011). To evaluate the model performance, the FDC is subdivided into five FDC segments

(very high (0-5% days of exceedance), high (5-20%), medium (20-70%), low (70-95%), very low (95-100%)) as proposed by20

Pfannerstill et al. (2014b). The FDC signatures consider that different discharge magnitudes are controlled by different pro-

cesses. Whilst the high flow segment is mainly impacted by precipitation and fast runoff components, low flows are controlled

by evapotranspiration and deep groundwater storages (Yilmaz et al., 2008; Cheng et al., 2012; Pokhrel et al., 2012; Yaeger

et al., 2012; Guse et al., 2016b)

Each FDC segment was separately evaluated. Therefore, the ratio of the root mean square error to the standard deviation25

(RSR) was calculated for each FDC segment (Eq. 3) (Moriasi et al., 2007). The standardisation allows a fair comparison

between the different segments (Haas et al., 2016). The optimal value for the RSR is zero. Using these five signature measures,
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it can be derived how model parameters are related to the different discharge magnitudes (Pfannerstill et al., 2014b; Guse et al.,

2016b).

RSR=

√
1
N

N∑
i=1

(Qo−Qs)2

√
1
N

N∑
i=1

(Qo −
−
Qo)2

(3)

These ten different performance criteria were calculated for all 2000 simulation runs. Both, parameter sets and calculated

performance criteria from these simulations were then used for the following analyses.5

To analyse the relationship among the different performance criteria the correlation coefficients between all pairwise com-

binations were calculated. This correlation analysis enables the detection of (dis)similarities between performance criteria.

Similarities in the performance criteria as indicated by a linear relationship in the dotty plots would show that these perfor-

mance criteria capture a similar type of model error for this catchment. The intention was to detect whether each performance

criterion provides additional information of the model error and whether the relationships were similar in both catchments.10

2.4 Regression Trees

Regression Trees (RT) are a method to order the relationship between several explaining variables and a single target variable

(Breiman et al., 1984). In a sequence of regressions, subsequently that variable is determined from a set of variables that has

the highest predictive value for the target variable being analysed. An example of a regression tree will be shown in the results.

A regression tree is a binary algorithm using on a logical expression. In each step the data set is subdivided into two subsets15

(Singh et al., 2014b, a). The sequence of decisions is visualised in a tree diagram and allows to visually explore the importance

of the different variables as predictor variables for the target variable. The (sub)set of model simulations is subdivided in each

node of the tree into two groups defined by a threshold value for one of the explaining variables. All simulations with a value

in the explaining variable above the threshold belong to the one group, and those with a value below the threshold to the other

group. For each node, this approach is repeated until no further subdivision of a variable at a certain node explains the target20

variable. Either a different or an already chosen explaining variable is selected in the next branch of the tree. A regression tree

consists of multiple branches depending on the complexity of the relationship between explaining and target variables. The

earlier a variable is used in the construction of a RT, the higher is its importance. The variable used in the first split has thus the

maximum importance. The gain in information is maximised by defining clearly separated subgroups of the whole simulation

set (Singh et al., 2014b).25

For our analyses, we used the R package rpart (Therneau and Atkinson, 2010). Using the RT algorithm, the contribution of

each explaining variable on changes in the target variable is calculated. The percentage contribution of each explaining variable

shows its importance for the target variable (Singh et al., 2014b).
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2.4.1 Regression trees using performance criteria as target variable (RTperf)

Regression trees are applied in this study in two approaches using the 2000 model simulations with the pre-selected model

parameters and the calculated performance criterion. In a first application the ten performance criteria are used consecutively

as target variable to construct regression trees for each performance criteria (named RTperf). As explaining variables, the

model parameters are used to detect which model parameters lead to changes in a certain performance criteria. The relevance5

of each model parameter is derived from regression trees by calculating the percentage contribution of each model parameter

in explaining the variability in a certain performance criterion. In this way, the most relevant model parameters are identified

for each performance criterion.

2.4.2 Regression trees using model parameters as target variable (RTpar)

It is not only interesting to detect the most relevant parameters for a certain performance criterion. It is also important to know10

which performance criterion is most strongly impacted by changes in the values of a certain parameter. The latter point could

not be derived from RTperf.

Thus, the next step was initialised vice-versa to RTperf from the side of model parameters to analyse how changes in model

parameter influence the performance criteria. To achieve this, explaining and target variables in RT are permuted. Each model

parameter is used as target variable in RT and all performance criteria as explaining variables (named RTpar). In this way, it is15

detected which performance criterion is most strongly impacted by changes in the values of a certain model parameter. Thus in

RTpar, the other model parameters are not directly used. Similarly to RTperf, the percentage contribution of each performance

criterion is calculated to explain the impact of change in the values of a certain model parameter.

2.4.3 Connective strength by comparing both regression tree approaches

Subsequently, the percentage contributions as derived from both RT approaches are compared to analyse the connective strength20

between model parameters and performance criteria. We can differentiate into four cases of connective strength for each pair

of model parameter and performance criteria (Fig. 1).

1. High percentage contributions in both RTs (RTperf, RTpar):

Similar results of high percentage contributions in both RTs indicate a high bijective relationship between model pa-

rameter and performance criterion. In this case, the model parameter is clearly identifiable by the selected performance25

criterion. This is the optimal case representing a high connective strength and occurs if a certain parameter influences

one performance criterion to a large extent without influencing other performance criteria significantly.

2. High percentage contribution in RTperf, but low in RTpar:

In this case, a certain model parameter controls the selected performance criterion. However, this model parameter also

influences other performance criteria. This case occurs if the corresponding process is very dominant and influences30

multiple performance criteria. Here, the connective strength cannot be fully understood when using the performance
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criteria as the target variable. From the side of the model parameter, it has further investigated which performance

criterion is most appropriate for parameter identification.

3. Low percentage contribution in RTperf, but high in RTpar:

In this case, the model parameter is not the major controlling parameter on the selected performance criterion as detected

in RTperf. However, its impact on other performance criteria is even lower which results in a high value in RTpar.5

Thus, the selected performance criterion is appropriate to explain the impact of changes in this model parameter, but

the performance criterion is even stronger impacted by other model parameters. This case occurs if the corresponding

process is of a minor relevance in describing the hydrological system of the catchment. Thus, due to the low process

relevance, the connective strength is also low and a precise parameter identification is not found.

4. Low percentage contributions in both RTs:10

In this case, neither this model parameter impacts the performance criterion to a relevant extent, nor the performance

criterion is impacted by changes in the parameter. Thus, the connective strength is low. This parameter is not identifiable

due to the low relevance of the corresponding process and a low relationship to one of the performance criteria.

[Figure 1 about here.]

By applying this approach to two catchments with different characteristics, it is analysed how strongly a certain perfor-15

mance criterion is connected to a specific model parameter and how this connective strength depends on the relevance of the

corresponding process.

3 Results

3.1 Correlation between performance criteria

Pairwise correlation analysis for the performance criteria is carried out separately for each catchment. In the Treene catchment20

(Fig. 2, upper panel), NSE, KGE and the RSR of very high and high segments of the FDC are strongly correlated. Moreover, the

RSR of low and very low flows are highly correlated. The KGE is mainly controlled by its variability component (KGE_alpha).

A good performance of KGE_alpha (optimum=1) also results in a high performance in KGE. The KGE_beta (bias component)

is correlated with the mid segment of the FDC. Concerning the values of the performance criteria, KGE_alpha and KGE_beta

are mostly higher than one, indicating an overestimation and higher variability in the modelled discharge than in the measured.25

A good performance in a certain segment of the FDC occurs in the case of a good performance in the adjacent segment(s). In

the case of a good performance for low flows also very low flows perform well. Similarly, also a good performance for very

high flows was detected in model runs with a good performance in high flows. However, the correlations between the RSR of

(very) high and (very) low flows are lower which indicates that there are less model runs with a good performance in both high

and low flows.30

[Figure 2 about here.]
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In the Saale catchment (Fig. 2, lower panel), the correlations are overall lower. The strongest correlation is observed between

NSE and the KGE_r. The KGE is correlated to KGE_alpha and KGE_r. Thus, both variability and correlation in the modelled

discharge time series are relevant for a good performance of the KGE. The KGE_beta in contrast, which is balanced between

over- and underestimation, is of lower relevance. The correlation among the signatures of the FDC segments is lower compared

to the Treene catchment, even between adjacent segments. Here, a good performance of low flows does not result in a good5

performance of very low flows. A worse performance of KGE-alpha (higher or lower than one) leads to a decrease in the

KGE since it increases the Euclidean distance of the three KGE components. However, as shown in Fig. 2, a different result

was obtained between KGE_alpha and NSE. A lower variability in the modelled than in the measured discharge time series

(KGE_alpha<1), results in an improvement of the NSE. In contrast, a KGE_alpha larger than one indicates that the variability

is higher in the modelled discharge time series which leads to a reduction of NSE. This corresponds with the calculation of10

NSE which strongly emphasises the variability in the measured time series.

3.2 Impact of model parameters on performance criteria (RTperf)

The connective strength between model parameters and performance criteria was investigated using regression trees (RT). At

first, RTs were constructed using the ten performance criteria (RTperf) as target variables. The aim of this step was to detect

which model parameter most strongly affects a certain performance criterion.15

Fig. 3 (above) shows the regression tree for the KGE for the Treene catchment exemplarily for RTperf. Looking from top

to down, the most influencing model parameters for the KGE are provided. The first branch is defined by the groundwater

retention time of the first aquifer (GW_DELAYfsh) and the second one on the one right side again by GW_DELAYfsh and

on the left side by the aquifer partitioning coefficient (RCHRGssh). In total, only groundwater parameters affect the KGE to a

relevant extent. When going along the branch at the right side, parameter settings of the controlling model parameter at these20

nodes are identified which lead to the best KGE on average (0.83).

[Figure 3 about here.]

To assess the connective strength between model parameters and performance criteria, the percentage contribution of model

parameters as explaining variables for each performance criterion is shown for both catchments (Fig. 4).

The parameter contribution in the Treene catchment to explain the variability in the performance criteria can be classified into25

three groups (Fig. 4, above). At first, six performance criteria are mainly influenced by GW_DELAYfsh and to a lower extent by

RCHRGssh which shows the strong dominance of groundwater processes (see also Guse et al. (2014)). However, since multiple

performance criteria are influenced by GW_DELAYfsh and RCHRGssh, the most appropriate performance criterion to identify

the impact of these parameter is not detectable. The second group consists of KGE_beta and the RSR of the mid flow FDC

segment. Both are controlled strongly by soil evaporation (ESCO) and available soil water capacity (SOL_AWC). Thirdly,30

low and very low flows are controlled in addition to GW_DELAYfsh by the baseflow recession coefficient of the second

aquifer (ALPHA_BFssh). Seven of the twelve model parameters namely fast runoff (CN2, SURLAG, GDRAIN, LATTIME),
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soil (SOL_K) and snow parameters (SFTMP, SMTMP) have only a minor impact on all performance criteria and cannot be

identified by the selected performance criterion.

[Figure 4 about here.]

Fig. 4 (below) shows that the relationship between model parameters and performance criteria is more complex in the

Saale catchment compared to the Treene. A clear classification into groups of performance criteria which are controlled by5

certain model parameters is more difficult. Four performance criteria (KGE_alpha, KGE_r, NSE, very high flow segment

of the FDC) are controlled by the lateral flow lag time (LATTIME). But these performance criteria are also influenced by

groundwater parameters (GW_DELAYfsh, RCHRGssh). Furthermore, the RSR for high flows is not controlled by LATTIME

but by these two groundwater parameters and the hydraulic conductivity in the soil (SOL_K). The KGE is controlled by a

parameter (GW_DELAYfsh) which has not the largest percentage contribution for one of its three components. The water10

balance (KGE_beta) is controlled by ESCO and SOL_AWC, while mid flows are mainly influenced by SOL_AWC. Low

flows are controlled by GW_DELAYfsh and very low flows by ALPHA_BFssh. Snow and fast runoff parameters except of

LATTIME do not influence one of the performance criteria to a high extent. Thus, also in the Saale catchment, parameters exist

without significant impact, while LATTIME controls multiple performance measures.

By detecting the controlling model parameters for each performance criterion, in both catchments no appropriate perfor-15

mance criteria are found for several model parameters (e.g. CN2) which shows the low connective strength between these

model parameters and the performance criteria. Due to that, the identification of parameter values would be difficult. It is of

importance to detect whether the low relevance of a model parameter is related to a minor relevance of the corresponding pro-

cess or whether the selected performance criterion are inappropriate to identify this model parameter. Moreover, some model

parameters have the highest influence on multiple performance criteria (e.g. GW_DELAYfsh and RCHRGssh in the Treene,20

LATTIME in the Saale), which leads to unclear results in the connective strength between model parameters and performance

criteria. This suggests that these parameters extremely govern the overall hydrological system in the model.

3.3 Impact of changes in model parameters on performance criteria (RTpar)

In the second RT step, the relationship between model parameters and performance criteria is analysed using the 12 model

parameters consecutively as target variables. It is investigated which performance criteria are impacted by changes in the25

model parameters (RTpar, Fig. 5).

Fig. 3 (below) shows the regression trees examplarily for the model parameter GW_DELAYfsh for the RTpar approach in

the Treene catchment. Here, KGE_alpha separates the data set at the first node and occurs once at the two following branches.

Moreover contrasting performance criteria are included (KGE_r, RSR for very high flows and very low flows).

In the Treene catchment (Fig. 5, above), the curve number (CN2) is most significantly related to the RSR for very high30

flows and furthermore to NSE, KGE and the RSR for high flows. This shows that CN2 and thus surface runoff controls the

highest flow conditions. Snow parameters (SFTMP, SMTMP), the timing parameters for surface runoff (SURLAG) and tile flow

(GDRAIN) as well as soil hydraulic conductivity (SOL_K) have the highest influence on KGE_r (correlation). Thus, variations
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in these parameters lead to changes in the correlation between measured and modelled discharge time series. Concerning the

soil model component, SOL_AWC and ESCO are strongly related to water balance (KGE_beta) and to a lower extent to RSR

for mid flows. ALPHA_BFssh is related to the RSR of low and very low flows as well as to the NSE. For the two groundwater

parameters (GW_DELAYfsh, RCHRGssh), four performance criteria (NSE, KGE, KGE_alpha, RSR for high flow) have a

similar percentage contribution. This point shows that both groundwater parameters control different aspects of hydrological5

model behaviour without having a clear relationship to a certain part of the hydrograph.

[Figure 5 about here.]

In the Saale catchment (Fig. 5, below), snow parameters (SFTMP, SMTMP) as well as LATTIME affect both KGE_r and

NSE. Changes in the curve number (CN2) mainly influence KGE_alpha and the RSR for very high flows. Thus, the variability

between measured and modelled discharge time series and in particular high flows are influenced by CN2. All three soil10

parameters (SOL_AWC, SOL_K, ESCO) influence the water balance (KGE_beta) and the mid flow segment of the FDC.

However, evaporation (ESCO) is more related to KGE_beta while SOL_AWC has the largest impact on mid flows. In the

case of GW_DELAYfsh several performance criteria are affected to a similar extent, but none of them has a high percentage

contribution. While RCHRGssh affects KGE and high flows, ALPHA_BFssh strongly controls very low flows.

3.4 Comparing RTperf and RTpar15

Subsequently, both RT approaches are compared by relating the percentage contribution from RTperf to RTpar and analysing

these patterns for each performance criterion for both catchments (Fig. 6).

[Figure 6 about here.]

For mid and low flow conditions, both RTperf and RTpar provide a strong connective strength with high percentage contri-

bution in RTperf and RTpar for the same pair of model parameter and performance criteria in both catchments. The strong20

relationship of evaporation (ESCO) and available soil water capacity (SOL_AWC) to the RSR of the mid flows and the

KGE_beta is derived in both RT approaches (Fig. 6). The water balance (KGE_beta) is hereby more controlled by ESCO,

whilst SOL_AWC is the dominant parameter for mid flows especially in the Saale catchment.

Similarly, the connection between the RSR for the very low segment of the FDC and the baseflow recession coefficient

(ALPHA_BFssh) is strong in particular in the Saale catchment. In both catchments, also the retention time of recharge into the25

groundwater (GW_DELAYfsh) is of relevance.

The KGE is dominated by GW_DELAYfsh and the aquifer partitioning coefficient (RCHRGssh) in a similar way in both

catchments despite of contrasting catchment characteristics. The KGE is most strongly impacted by GW_DELAYfsh (see

RTperf). However, in RTpar, the KGE has a higher percentage contribution in explaining the changes in RCHRGssh than in

GW_DELAYfsh.30

In contrast, the performance criteria related to high flows (NSE, very high segment) are controlled in the Treene catchment

by groundwater (GW_DELAYfsh, RCHRGssh) and in the Saale catchment by lateral flow (LATTIME). This pattern shows that
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the NSE focuses on the model error at high flows. A lower connective strength between model parameters and performance

criteria was detected for high flow conditions. A bijective relationship between high flow related performance criteria and

certain model parameters is more difficult to detect. The five performance criteria representing high flow conditions in the

Treene catchment are related to the same two groundwater parameters (GWDELAYfsh and RCHRGssh). However, whilst

GWDELAYfsh and RCHRGssh are the most dominant model parameters in RTperf, the percentage contribution in RTpar is5

lower. These two parameters dominate five performance criteria, but it remains unclear which is the best performance criterion

in terms of parameter identification. Thus, while model errors in mid and low flows are identified by the same performance

criterion (Case 1, see Chapter 3.3.3), it is more complex to find appropriate performance criteria for errors in high flows. Here,

a more complex hydrological behaviour is in particular detected in the Saale catchment as indicated by different controlling

parameters on the performance criterion (Case 2 and 3 in Chapter 3.3.3). Moreover, the most dominant parameters in both10

catchments (GW_DELAYfsh in the Treene, LATTIME in the Saale) have a high percentage contribution in particular in RTperf

both for high and low flows.

A very specific pattern is detected for KGE_r in the Treene catchment. In RTpar, a high percentage contribution of KGE_r

for model parameters of lower relevance is detected. The high values for RTpar and the low values for RTperf in Fig. 6 shows

that KGE_r is the most appropriate performance criterion to assess changes in these model parameters. However, due to the15

low relevance of snow or surface runoff, the KGE_r is controlled by groundwater parameters. Here, we see a large difference

in the interrelationship between model parameters and performance criteria by comparing RTperf and RTpar.

4 Discussion

In this study, the connective strength between model parameters and performance criteria was investigated using two ap-

proaches of regression trees.20

The RT approach using performance criteria as target variables (RTperf) (see Fig. 4) shows that not all model parameters

influence one of the selected performance criteria. However, using model parameters as target variables in RTpar it was detected

which performance criteria are impacted by changes in the value of a model parameter. In this way, it can be derived whether

the parameters and their associated processes are of low relevance or whether an appropriate performance criterion for a model

parameter is missing. The RTpar approach shows for the majority of the model parameters that the changes in their values25

are detectable at least by one of the selected performance criteria. Thus, the impact of parameters from processes of minor

relevance on performance criteria can be derived in RTpar. This demonstrates that the impact of performance criteria depends

on the relevance of the corresponding process (Sadegh and Vrugt, 2014). In this way, it can be derived whether the parameters

and their associated processes are of low relevance or whether an appropriate performance criterion for a model parameter is

missing. In the case that the relevance of the associated process is very low, parameters from other more dominant processes30

control the performance criteria. This is for example shown for the curve number (CN2). Its impact on the performance criteria

in the Treene catchment is low due to the higher contribution of groundwater flow compared to surface runoff.
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Comparing the results of the two RT approaches, a higher similarity between both catchments is detected in RTpar (Fig. 5).

Differences between RTperf and RTpar are also obtained for parameters related to the most dominant process(es). The ground-

water parameters (mainly GW_DELAYfsh) control most of the performance criteria for the Treene catchment (Fig. 4). A

similar result is obtained for the Saale catchment with a dominance of the lateral flow lag time (LATTIME).

5

The differences in the relevance of model parameters on the ten performance criteria emphasise the benefit of the use of

this set of performance criteria. The separate consideration of KGE components demonstrates that different parameters are

related to these three performance metrics. While the relevant parameters on KGE and KGE_alpha are similar in the Treene

catchment, the most relevant parameter on the KGE in the Saale catchment (GW_DELAY) is not the relevant one for the three

KGE components. Since each KGE component can be clearly related to a specific part of the hydrological behaviour (Kling10

et al., 2012), the regression tree shows whether a model parameter is more relevant in representing the variability, correlation

or bias in the modelled discharge time series. By comparing the KGE and its components, the most important aspect of the

hydrologic behaviour for a good model performance becomes apparent such as the variability as detected by KGE_alpha in the

Treene catchment.

The differences in pairwise correlations of the performance criteria between both catchments also results in differences in15

the controlling model parameters on a certain performance criterion. Similar results in KGE and NSE are calculated in the

case of high correlation between KGE and KGE_alpha and thus the most relevant model parameters on these two performance

criteria are similar. The opposite result is obtained in the Saale catchment. Due to the low values of the KGE_alpha, different

parameters control KGE and NSE.

Concerning the signature measures, this study shows that different parameters are related to the FDC segments. This is in line20

with studies stating that each FDC segment can be related to certain catchment processes (Yilmaz et al., 2008; Yaeger et al.,

2012). The strong connective strength of model parameters regulating water balance to mid flows as well as of parameters

from slow reacting aquifer storages to very low flows is derived in this study. However, a typical sequence of a high connec-

tive strength of high flows to surface runoff parameters is not identified. Moreover, we can see that the dominant process, i.e.

groundwater flow in the Treene and lateral flow in the Saale catchment, influences both high and low flows. This leads to a25

trade-off in parameter identification since the same model parameters control high and low flows.

Our RT analysis in the two catchments shows that the most appropriate performance criterion varies depending on the

different model parameters. The connective strength between pairs of model parameter and performance criteria varies as it

was detected in linking RTperf and RTpar. Pairs with a high connective strength were detected and grouped. This results in30

a minimum number of required performance criteria of at least three performance criteria related to high, mid and low flow

conditions since the most relevant parameters between these three types of performance criteria vary. This is in line with other

studies on performance criteria stating that 3-4 performance criteria capturing different parts of the hydrological system are a

minimum number (Madsen, 2000; Boyle et al., 2001; van Werkhoven et al., 2008, 2009).
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The need for an individual performance criterion to assess mid flows was mentioned as a good representative for the water

balance (van Werkhoven et al., 2008; Wagener et al., 2009; Herman et al., 2013). The RT analysis shows that the controlling

parameters for KGE_beta and the RSR for mid flows are different compared to the other performance criteria and these

dominant model parameters are from the soil components and related to the water balance. In these cases, the connective

strength is very high.5

Also for an assessment of low flow conditions an individual performance criterion is needed which was in this case the

RSR for low and very low flows. A high connective strength between model parameter and performance criterion was detected

for very low flows. Moreover, the requirement for a segmentation of the FDC into very low and low flows as introduced by

Pfannerstill et al. (2014a) is emphasised by identifying different relevant model parameters. The high correlation between the

RSR for very low and low flows in the Treene catchment also results in similar dominant parameters, while different parameters10

control these signature measures in the Saale catchment (see Fig. 4). Thus, similar influencing parameters in RTperf for different

performance criteria are detected if both are highly correlated.

On the other side, high flows are more complex and driven by interacting and overlaying processes from different hydro-

logical components. Here, the most influential parameters and the most appropriate performance criterion vary depending on

the type of errors which are dominant in the modeling process. The complexity in the representation of high flows depends15

on the involved processes. In the groundwater dominated Treene catchment, the RT analysis for the five performance criteria

related to high flows provides very similar results. The RT analysis using the model parameters as explaining variables (RTpar)

however highlights the differences in the relationship of model parameters and these five performance criteria. In the Saale

catchment, the relevant model parameters largely vary between all performance criteria related to high flows. Here, all selected

performance criteria capture different types of errors in the modelled discharge time series. The analysis of deviations between20

measured and modelled discharge in this catchment is more complex so that more than one performance criterion for high

flows is required. With higher heterogeneity in dominant processes and strong interaction of different processes in controlling

the hydrological behaviour, a more distinct selection of a larger set of performance measures is required.

Thus, it can be recommended to include several performance criteria to capture all types of potential errors both in dynamic

and magnitude of the modelled discharge. In addition, it is relevant to consider which model parameters dominate the perfor-25

mance criteria also by comparing the dominant parameters between different performance criteria. This can help to understand

why a certain model error might occur and to which processes this model error is related.

As demonstrated in this study, the results vary between different catchments. Further studies in other catchments might

provide a more precise understanding of the connective strength between model parameters and performance measures. Due

to the general methodological approach, an applicability with other models is expected.30

5 Conclusion

For achieving a precise parameter identification, the connective strength between model parameters and different performance

criteria is analysed. For this, two regression tree (RT) approaches are applied using consecutively the performance criteria and
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the model parameters as target variables. This method derives which model parameters affect a performance criterion (RTperf)

and which performance criteria are impacted by changes in the model parameters (RTpar).

The main outcomes are:

1. The pairwise correlation between performance criteria varies between the two catchments depending on the model5

error. Thus, different performance criteria are required to disentangle the impact of different hydrological behaviour on

the modelled discharge. The number of required performance criteria is higher for catchments with a higher process

complexity.

2. In RTperf, it becomes apparent how largely the relevance of model parameters varies between different performance

criteria. Our study emphasises the relevance of a separate consideration of the KGE components and of a signature-10

based analysis of different FDC segments for a precise parameter identification. Differences in the dominant parameters

are detected between performance criteria related to high, mid or low flow conditions, respectively.

3. RTpar using the model parameters as target variables shows which performance criterion is appropriate to identify a

model parameter. Similar results in RTperf and RTpar demonstrate the high capability of a performance criterion to

consider the impact of a model parameter accurately. Contrasting results are in particular derived for model parameters15

which are related to processes of minor relevance. A bijective connective strength between model parameters and per-

formance criteria is detected for low and mid flows, whilst the modelling of high flows is more complex both in terms of

relevant model parameters and appropriate performance criteria.

Overall, this study shows that multiple performance criteria are required for an accurate parameter identification for re-

liable hydrological modelling. The connective strength between model parameters and performance criteria varies between20

catchments depending on the hydrological complexity of the catchments with respect to the processes and their relevance in

controlling the hydrological behaviour in models. Using our approach, it can be derived how precisely model parameters can

be identified by a set of performance criteria.
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Figure 1. Flowchart of four cases of connective strength between model parameters and performance measures. A wider blue line shows a
higher impact of the model parameter on the performance criteria
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Figure 2. Scatterplot matrix of the performance criteria of the Treene (in black, upper panel) and Saale (in grey, lower panel) catchment
showing pairwise performance criteria plots for the 2000 model simulations. The scales on the sides show the values of the respective
performance criterion.
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Figure 3. Example of a regression tree (RT) using (above) KGE as target variable and model parameters as explaining variables and (below)
the model parameter GW_DELAYfsh as target variable and performance measures as explaining variables for the Treene catchment.
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explaining the performance criteria is shown for the Treene (above) and Saale (below) catchment. In every row the percentage contributions
sum up to 100%.
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Figure 5. Regression trees (RT) using model parameters as target variables (RTpar) for the Treene (above) and Saale (below) catchment
and performance criteria as explaining variables. All values of a parameter are in white in the case that the resulting variation among the
performance criteria for this parameter was too low to construct a regression tree. In every row the percentage contributions sum up to 100%.
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Figure 6. Connective strength between performance criteria and model parameters. The percent contribution of the pairs of model parameter
and performance criterion are shown as derived from RTperf (x-axis) and RTpar (y-axis). A high value along the x-axis shows a high
contribution of a model parameter in explaining the variability in the performance criterion as detected by RTperf. A high value along the
y-axis (RTpar) shows that this performance criterion among all performance criteria is most strongly impacted by changes in the model
parameter. A strong connective strength is detected if both values are high. The pairs with at least one high percent contribution are labeled.
The results from the Treene catchment are shown as black circles and from the Saale catchment in grey squares. Please note that percentage
contributions on the x-axis sum up to 100%, while this is not the case for the y-axis.
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Table 1. List of SWAT models parameters. Lower and upper ranges are given as absolute range (r), additive (a) or multiplicative (m) value.
Further information can be found in the theoretical documentation of the SWAT model (Neitsch et al., 2011).

Parameter name Abbreviation Process Range Lower Upper
type range range

Snow fall temperature SFTMP Snow r -2.5 2.5
Snow melt temperature SMTMP Snow r -2.5 2.5
Curve number CN2 Surface runoff a -10 10
Surface runoff lag time SURLAG Surface runoff r 0.8 4
Lateral flow lag time LATTIME Lateral flow r 0.2 8
Tile flow lag time GDRAIN Tile flow m 0.5 1.5
Available water capacity of a soil layer SOL_AWC Soil water a -0.02 0.1
Saturated hydraulic conductivity of a soil layer SOL_K Soil water m 0.5 3
Soil evaporation compensation factor ESCO Evapotranspiration r 0.2 1
Groundwater delay time (fast aquifer) GW_DELAYfsh Groundwater r 1 50
Aquifer fraction coefficient (slow aquifer) RCHRGssh Groundwater r 0.2 0.8
Baseflow alpha factor (slow aquifer) ALPHA_BFssh Groundwater r 0.001 0.2
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